

Soluciones para la medida de hidrógeno

PRESENTACIÓN DE LA EMPRESA

Iberfluid pretende que sus clientes mejoren su **productividad y** seguridad.

Estamos presentes en los principales mercados industriales desde hace más de 40 años.

Nuestras soluciones son **personalizadas a las necesidades de** cada cliente.

Instalación y puesta en marcha Servicio de asistencia técnica Mantenimiento y calibraciones Proyectos llaves en mano Formación

IBERFLUID INSTRUMENTS, S.A. trabaja constantemente para liderar las aplicaciones de medición de caudal en diferentes sectores industriales

Farmacéutica y Alimentaria

Aplicaciones marinas

OEMS / EPC

Laboratorios y R&D

Generación Térmica

Siderúrgica

Application: Rheonik and Hydrogen Pioneering and leading into the future!

Welcome to Rheonik 2.0 Independent Coriolis Manufacturer German Engineering and Manufacturing

High Pressure Hydrogen Coriolis Flow Meters www.rheonik.com

Rev 1.1-ST – July 2018

Application: Rheonik and Hydrogen Pioneering and leading into the future!

- Overview Hydrogen Mobility
- Rheonik in Hydrogen Dispensers
 - First installations
 - Actual status
 - Market opportunities
- Rheonik in Hydrogen trailers
 - Actual projects
 - Market opportunities

Application: Rheonik and Hydrogen Pioneering and leading into the future!

Rheonik is market and technology leader in Hydrogen metering:

- Longest experience of all manufacturers in H2 metering
- Largest installed base globally
- Largest product range starting from 1g/min
- Highest pressures up to 1.500 bar
- Cryo-Hydrogen as liquid and Hydrogen as gas
- Stationary and mobile installations
- Latest Electronics Design with AssuranceFactor ®
- Best performance in class proved by national labs and customer tests

#1 in Hydrogen metering

Rheonik – first in the application, pioneering the technology:

1990 First Compressed Natural Gas (CNG) Coriolis Flow Sensor for hundreds of CNG filling stations in Italy
2003 First 1000 bar Coriolis Flow Sensors for the start of Hydrogen Industry of car fueling
2009 Installation at Shanghai H2-fueling station

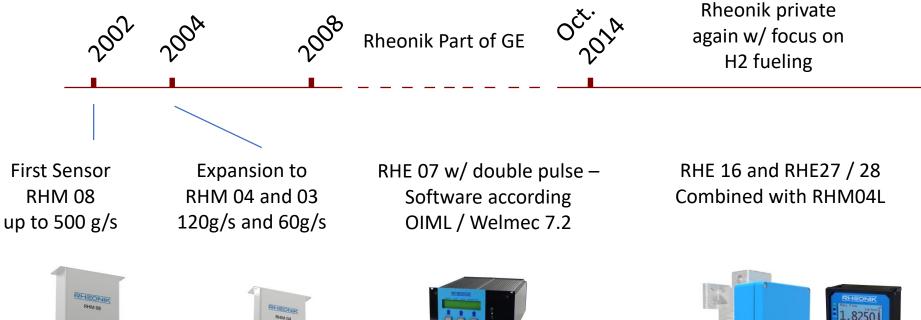
Avg. 4 cars per day. 350 bar technology. Meter continuously in service since 2009

2016 Engineering Partner of IVYS – DOE-Project: Advanced Hydrogen Dispenser Technology

2016 Intense testing with RHE16 and RHM 04 L – temperature compensation is key

2017 Key supplier for Linde Gas, excellent test results.

2017 Contact to major metrology labs/orgs.: NMI, PTB, LNE, NREL, KRISS, H2-Mobility, NOW, CEP



Solid 900 bar H2 Measurement solutions since 2002 !

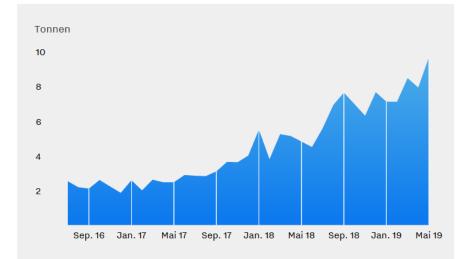
Overview Hydrogen Mobility

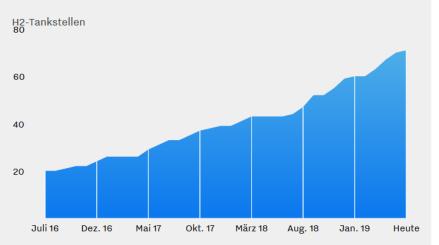
Increased momentum for hydrogen applications: Market Driver: CO2, green house gas, NOx, Diesel, Clean Energy Key regions: USA (California), Germany, Japan Future regions: China, all W-Europe, USA, Korea <u>http://www.hydrogencarsnow.com</u>

Think beyond cars:

- hydrogen/fuel cell forklifts
- hydrogen/fuel cell busses
- hydrogen/fuel cell truck's
- hydrogen/fuel cell train's
- Even: hydrogen/fuel cell ferries

BERFLUID Instruments Overview Hydrogen Mobility First 100% Fuel Cell Hydrogen Truck





Number of Stations in Service

Hydrogen Dispensed:

Hydrogen Market DE+EU Overview

Actual Stations in Service: Germany: 70 (End of 2019: 100)

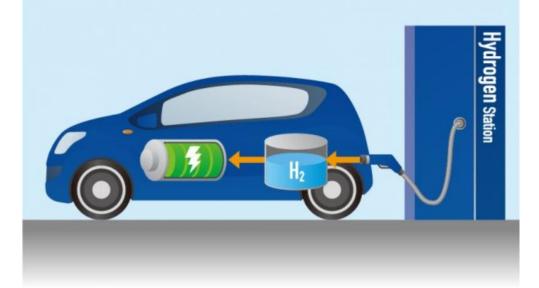
Europe: 116 (End of 2019: 180)

Expected in 2025:

	Germany:	400
Europe:	800	

https://h2.live/

Hydrogen: Fueling and Supply



NMi appointed to issue Dutch certificates for CG dispensers

Legal Situation:

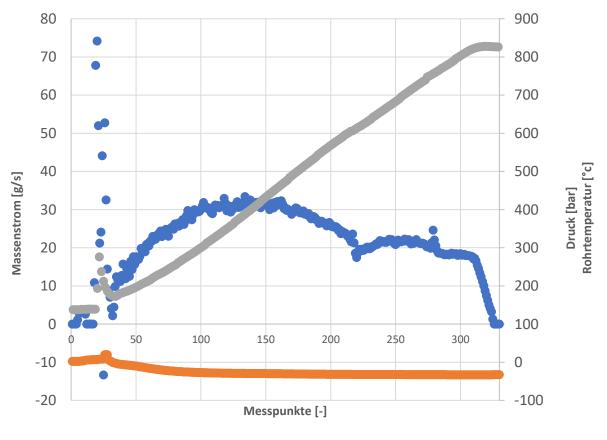
All major national labs are waiting for the first OIML / MID-certified Coriolis meter for hydrogen dispensers.

All test results of Rheonik's meters so far have shown, that Rheonik's RHM's/RHE's will meet the OEM spec's.

18 September 2017

As of this week NMi is appointed to issue Dutch certificates for Compressed Gas dispensers. The Dutch legislation has been changed 1 November 2016. As of this date, market access is only possible for nationally approved CNG (or Hydrogen) dispensers. This means that a manufacturer should acquire a national approval in the Netherlands. These approvals are based on the OIML R 139 (2014).

Hydrogen metering:


-> Rheonik is the first choice !

- 350 bar technology:
- Busses
- Forklifts
- Cars gen. 2 tanks

700 bar technology:

Cars gen. 3 and 4 tanks
Rheonik RHM's work in the cold, as well in the warm section with highest precision!

Next gen SAE fueling protocol 1000 bar ? -> RHM's are ready for it!

• Massflow [g/s] • Tubetemp. [°C]

Tubetemp. [°C] • Pressure [bar]

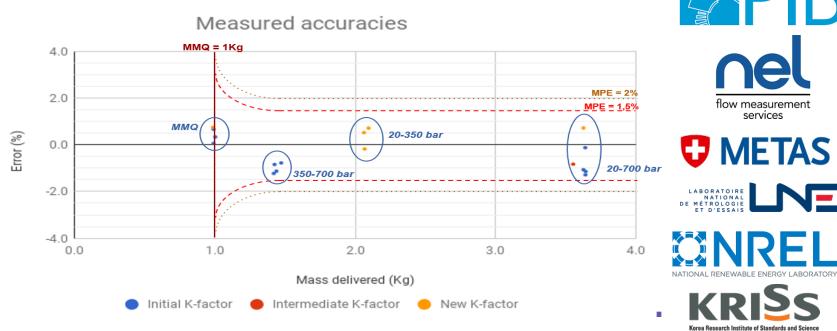
High Pressure H2-fueling SAE 700 bar

Test Results at Linde Nov. 2016, July 2017

l	a 1 11	DUBA		Rheonik [kg]	RMS [kg]	Abweichung [%]	Abweichung [kg]	Korr:	Mit KF 5032,178
	Competition	RHM	RHM Opt.	5,489066	5,299	3,587	0,190	NP: 4,46 0,3	205 0,908
Sdev.	15,90073995	10,75665611	10,5723847	5,529934	5,291	4,516	0,239	1,:	134 1,813
Avg. Diff.	3,65	1,12	0,00	0,588338	0,559	5,248	0,029	NP: 4,81 1,8	867 2,527
_	5,05	1,12		1,045245	1,0485	0,071	0,001	-3,5	311 -2,517
# in spec	1	6	8	1,572892	1,528	2,938	0,045	-0,4	444 0,276
# total	15	15	15	2,231049	2,173	2,671	0,058	-0,7	710 0,017
				1,089442	1,047	4,054	0,042	0,6	572 1,363
Hitrate	7%	40%	53%	1,037447	1,008	2,921	0,029	-0,4	460 0,260
	1	1	9 16:41	1,080978	1,043	3,641	0,038	0,3	260 0,961
			10 16:46	5 1,032568	1,001	3,154	0,032	-0,3	228 0,486
		·	11 16:51	l 1,148997	1,113	3,234	0,036	-0,:	147 0,565
			12 17:48	3 2,667359	2,514	6,100	0,153	2,7	719 3,357
			13 17:53	3 2,903661	2,8215	2,912	0,082	-0,4	470 0,251
			14 18:17	7 2,565086	2,498	2,686	0,067	-0,6	596 0,030
		· -	15 18:39	2,531653	2,506	1,024	0,026	-2,3	358 -1,589
			16 19:20	2,564364	2,507	2,288	0,057	-1,0	093 -0,357
			17 19:32	2 2,271564	2,211	2,739	0,061	-0,6	542 0,083
			18 19:51	1 2,659162	2,531	5,064	0,128	1,6	582 2,347
			19 19:58	3 2,94277	2,8515	3,201	0,091	-0,3	181 0,532

-> Great results at real life conditions H2 fueling at T -40°C

-> Rheonik out-performed the competition out of the box !



Competitive advantage:

- Best performance in the cold section and warm section of an H2-dispenser
- Smallest footprint of all competitors
- Largest installed base in H2 dispensers globally
- OIML / MID approval in process
- RHE27 / 28 designed to be OIML-ready
- 2 weight's & measures approvals in California
- Global service and support
- First choice for the market leaders

THE LINDE GROUP

PRODUCT

Lind

AIR LIQUIDE

flow measurement

services

Why Rheonik ? Where to go ?

Competitive advantage:

- Best performance in the cold section and warm section of an H2-dispenser
- Smallest footprint of all competitors
- Largest installed base in H2 dispensers globally
- 350 bar and 700 bar technology, ready for the 1000bar technology
- Competitive prices even at 350 bar technology
- RHE27 / 28 designed to be OIML-ready
- 2 weight's & measures approvals in California
- Global service and support
- First choice for the market leaders

Hydrogen: Fueling and Supply

Application: Hydrogen Trailer Unloading

- The Market
- Technical Aspects
- Actual Technology / Competition
- USP's / Where to go

Application: Hydrogen Trailer Unloading

 The Market: 200bar / 300 bar trailers -> 500 bar trailers Germany: 180 H2 trailers 350 high pressure gas trailers

Europe:350 H2 trailersUSA:>300 trailers

 Legal requirement in Europe: Traceable measurement according to MID-Directive installed until Dec 2020

Highest accuracy - short unloading time connected to On-Board-Unit - ready for 500 bar trailers quick and easy recalibration!

Application: Hydrogen Trailer Unloading

- Rheonik's Omega Coriolis Advantage:
 - -> Best performance for H2 High Flow Rates
 - -> Compact package fit's ideal into the trailer, short flange-to-flange length
 - -> Ready for 500 bar storage technology
- Field test finished at Linde's 200bar and 300 bar trailers
- 22 Trailer in operation with a Rheonik Metering System (>200 till end 2020)
- Reference Metering System is as well a Rheonik Omega Coriolis

Application: Hydrogen Trailer Calibration 300 bar

Application: Hydrogen Trailer Calibration 200 bar

Calibration reference meter

Image: Section of the section of th

				Million Lange										
	Eich	norn	nal:	LG Prü	fsta	nd V	Vaage				Prüflin	g: Flow	Mass	
								0 %	6					
	Durch	fluss		-9,7	72	t/}	1		F	ehle	r r	n. def	. %	
	Eichno	ormal		0,0	00	kg	1		Ges	samtmen	ge 5	104,8	5 kg	
	Prüfl	ling		0,0)0	kg	1 ~ ~ ~ ~	-		Zei		0:58:1	-	im:s
	Drucken	Nr		Start kg	Stop		Eichnormal kg	Prüfling kg		Fabs	Frei	q	q t/h	Kommentar
	R		13	1550,00	180	0,00	250,00	249.		-0,46	-0,18	100	6.33	
-	N		14	1850,00	210	0,00	250,00	249,	96	-0.04	-0,02		6,32	
-	N		15	2150,00	240		250,00	248,	88	-1,12	-0,45		8.88	
+	ব		16	2450,00	270		250,00	249,		-0,06	-0,02		9,09	2010.11
+	<u>v</u>		17	2750,00	3000		250,00	249,		-0,76	-0,30		9.08	201000
+	4	1	18	3050,00	3300		250,00	249,		-0,44	-0,18		9,04	
	4		19 20	3350,00 3650,00	3600		250,00	249,4		-0,54	-0,22		9,04	
1			20	3650,00	3900		250,00	250,4		0,44	0,18	and the second se	4,34	
1	v.		22	4250,00	4200		250,00	250,3		0,33	0,13		4,00	
	2	1000	23		4500		250,00	250,2		0,21	0,08	the second s	3,99	De
	V		24	and the second se	5100		250,00 250,00	250,6		0,65	0,26		3,02	-0
		A State of the state of		4000,00	5100	.00	200.00	250,4	10	0,40	0,16	24.09	2,89	

WEARE CORIOLIS FLOW TECHNOLOGY THAT OFFERS MORE EXTREME

Linde Liquid H2 Service

Customer : Linde Germany Service : Liquid H2 Temperature : - 255 DegC

Hydrogen Trailer Unloading

- USP's:
 - Omega Coriolis handles high flow velocities -> faster unloading
 - Omega Coriolis is available for 500 bar storage technology
 - Omega Coriolis is very compact -> fit's installations restrictions very well
 - Omega Coriolis has custom designed adaptions -> good for retrofit business
- Where to go?

Key: High pressure ... the higher the better!

The Hydrogen Fuel Cell E-Bike :

Bic	ycle							
Total weight	~ 23.6 kg							
Maximum speed in electric mode								
Motor power	250 w							
H2 sy	ystem							
Max. working pressure	340 bar							
Storage capacity	33gr H2, corresponding to 1,000 Wh							
Range per fill	> 100 km							
Fuelling time	1 – 6 min							
Fuel cell lifetime	5 years							
Fuel cell efficiency	~ 50%							
Buffer battery	60 Wh							

http://www.irunonhydrogen.com

Advantages of the Omega Sensor

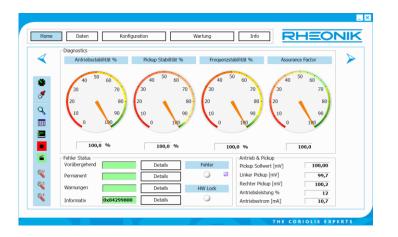
- Working horse of the industrial flow measurement
- 30 years experience and thousands of meters globally installed
- State of the art Electronics with RHE2x platform
- Full line Coriolis manufacturer from 1mm tubes till 12" meters
- Various Material for Tubes and wetted parts
- Best performance for high pressure applications
- Highest raw signal compared to all other tube shapes !
 Best Signal to Noise Ratio !
- State of the art electronics with ASSURANCE FACTOR ®

Hardware Lock, Color Display with Scheme acc. to NAMUR

RHE2x – The New Transmitter Line. Key Features

Communication: Modbus, USB Advanced Diagnostics: Assurance Factor [®] Color Backlight Display – Namur Color Code Hardware-Lock

ISO 9001:2008


ISO 9001:2008

ENAC 17025

instruments

RHE.com Software with Data Logger

ASSURANCE FACTOR®								
White	Amber	Blue	Red					
Normal Operation No faults present. All parameters within expected limits. Meter fully operational	Operation Not Optimal Sensor subject to noise / changing conditions in pipe. Measurement quality may be compromised	Operation at Limit Sensor experiencing disturbance. Measurement quality compromised	Measurement Failure Sensor experiencing extreme disturbance / meter in fault. Measurement offline					
Assurance Vi Assurance	Factor 🖷	RHEONIK Assurance View 1 okup1 (mU): 88 okup2 (mU): 79 okup3 (abdx%): 100.0 uce Volt.(mU): 1524 ns-Dru (mA): 12.9 uce Gain (%): 33 uce Stab.: 100.0	RHEONIK Assurance View 2.4 Freq. (Hz): 147, 847 Freq. Stal.(X): 99,99 Elect.Tmp. (°C): 35,48 Zero Pt. (Brs): -8,4 Last Zero (Shs): -6,7 Phase Variance: 11.5 Period Vari.: 17.5					

Soluciones para la medida de hidrógeno

MUCHAS GRACIAS